寺谷

さびの「診断」と反応性塗料の「処方」による鉄鋼インフラの

長寿命化技術の開発 ーさびさせて守る新たな思想で鉄鋼インフラを守るー

(株)京都マテリアルズ 本社研究本部 山下 正人

(株)京都マテリアルズ 環境マテリアル研究所 野村 豊和

(株)京都マテリアルズ 本社研究本部 花木 宏修

長瀬産業(株) 機能化学品事業部 高橋 敏之

ナガセアプリケーション ワークショップ 高橋 正充

はじめに

鉄は地球の中で酸化物(鉄鉱石)として眠っているので鉄 鉱石に還ろうとするため、水や酸素により腐食しさびる。

通常、鉄鋼の防食には鉄を腐食環境から遮断する方法が 多く用いられ、具体的には塗装が一般的である。しかし、塗 膜が完全に環境を遮断することは困難である。また、腐食 部の補修では、さびを完全に除去することは困難で、さびが 残存したまま塗り替えられることも多く、残存さびで塗膜の劣 化が加速する。このように悪者扱いされているさびの性状を 改善し味方につけることができれば、新たな防食思想を展開 することが可能になる。

ここでは、さび構造を制御することで、通常は防食的では ないさびに防食性を与える"反応性塗料"を紹介する。

さびの「診断」

大気環境中の結晶性さび成分は、α-FeOOH、β-FeOOH、y-FeOOHやFe₃O₄である。さび成分の量比と鋼 材の腐食速度には相関がある10。図-1に示すように、さび中 のβ-FeOOHとFe₃O₄の合計質量割合が高い場合(図の右 下領域)は鋼材の腐食を抑制できず、α-FeOOHが主体の さび(図の上部領域)は、鋼材の腐食速度を低減する。さび 構造を基礎に、適切な「診断」と「処方」を講じることが、鉄鋼 インフラを防食し長寿命化を図るうえで重要である。

反応性塗料の「処方」

著者らは、さび構造を制御できる反応性塗料を開発した。 反応性塗料は、あえてさびを生成させ鉄表面を落ち着かせ て防食する環境調和性を基礎とした思想を有している。

反応性塗料は、鋼材および亜鉛めっき鋼材に適用でき、 任意の色調を付与することもできる。また、発錆した構造物

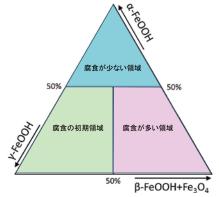


図-1 さびの構造による鋼材の腐食領域

にも効果があるため、メンテナンスに有効であり、図-1の右 下領域にあったさび構造が上部領域に変化することが確認 されている。詳細については、経済産業省2)や国土交通省3) からも紹介されているが、写真-1・2に例示するように、橋梁、 鉄塔、道路設備、プラントなどの構造物に適用されている。

写真-1 反応性塗料による橋梁補修(京都市 高瀬川)

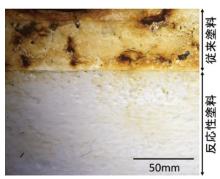


写真-2 塩化物の影響を受ける高速道路鋼製橋脚天端の 反応性塗料による補修後の状態

3種ケレンで適用。比較のための従来塗料(下塗り2層+中 塗り1層+上塗り1層)には腐食が進行。反応性塗料(下塗り 2層+上塗り1層)には従来塗料部の腐食による着色がわず かに塗膜表面に見られるが防食機能が作用している。

おわりに

インフラの老朽化は今後さらに進むことが予想され、適切 な補修により長寿命化を図ることはひとつの有効な手段であ る。さびの「診断」と反応性塗料の「処方」が、鉄鋼インフラ の長寿命化に役立つことを期待する。

《参考文献》

- 1)S.Hara, T.Kamimura, H.Miyuki and M.Yamashita, Corros.Sci.,49,1131(2007)
- 2)第6回ものづくり日本大賞、経済産業省、68(2016)
- 3)新技術情報提供システム、国土交通省、登録No.QS-170007-A(2017)